
maxon motor control
EPOS Application Note: CANopen Basic Information Edition May 2008

Positioning Controller

Application Note
"CANopen Basic Information"

Edition May 2008

EPOS 24/1, EPOS 24/5, EPOS 70/10, MCD EPOS 60W, EPOS2 50/5

Firmware version 2000h or higher

Introduction

The EPOS positioning controller is a digital positioning system suitable for DC and EC (brushless) motors with
incremental encoders in a modular package. The performance range of these compact positioning controllers
ranges from a few watts up to 700 watts.

A variety of operating modes allows all kinds of drive and automation systems to be flexibly assembled using
positioning, speed and current regulation. The built-in CANopen interface allows networking to multiple axis drives
and online commanding by CAN bus master units.

For fast communication with several EPOS devices, use the CANopen protocol. The individual devices of a
network are commanded by a CANopen master.

Objectives

This application note explains the functionality of the CANopen structure and protocol. The configuration process is
explained step by step.

References and Required Tool

The latest editions of maxon motor documents and tools are freely available at http://www.maxonmotor.com
category «Service & Downloads».

Document Suitable order number for EPOS Positioning Controller
EPOS Communication Guide
EPOS Firmware Specification 280937, 302267, 302287, 317270, 275512, 300583

EPOS2 Communication Guide
EPOS2 Firmware Specification 347717

CANopen documentation Specifications ‘DS-301 Version 4.02’ and ‘DSP-402 Version 2.0’
CiA (CAN in Automation e. V.) http://www.can-cia.org

Tool
EPOS Studio Version 1.30 or higher 280937, 302267, 302287, 317270, 275512, 347717, 300583

maxon motor ag Brünigstrasse 220 P.O. Box 263 CH-6072 Sachseln Tel.: 041/666 15 00 Fax: 041/666 16 50 www.maxonmotor.com

http://www.maxonmotor.com/
http://www.can-cia.org/

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

Network Structure

The CAN interface of the maxon EPOS drives follows the CiA CANopen specification DS-301 Version 4.02
Application Layer communication profile and the DSP 402 Version 2.0 Device Profile Drives and Motion Control.

Figure 1: CANopen Network Structure

The CAN-Bus line has to be terminated at both ends with a termination resistor of typically 120 Ω.

Some EPOS Positioning Controller have an internal bus termination which can be switched on with a DIP-Switch:

Device Bus terminated with 120 W DIP-Switch

EPOS 24/5 DIP-Switch 8 "ON"

EPOS2 50/5 DIP-Switch 9 “ON”:

Figure 2: DIP-Switch bus termination

2 maxon motor control Edition May 2008 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

Configuration

Follow the instructions step by step to set up a correct CAN communication.

Step 1:
CANopen
Master

Use one of the PC CAN interface cards or PLC’s listed below. For all of these manufacturers
motion control libraries, examples and documentation are available. The latest version may
be downloaded freely at http://www.maxonmotor.com.

Recommended PC CAN interface card

Manufacturer / Contact Supported
Products

maxon Motion
Control Library

IXXAT
 www.ixxat.de subdirectory «Contact»

All offered CANopen
cards

Windows 32-Bit DLL

Vector
 www.vector-informatik.de

All offered CANopen
cards

Windows 32-Bit DLL

National Instruments
 www.ni.com/can

All offered CANopen
cards

Windows 32-Bit DLL

Note: The interface driver of the CANopen card must be installed!

Recommended PLC's

Manufacturer / Contact Supported
Products

maxon Motion
Control Library

Beckhoff
 www.beckhoff.de

All offered CAN
cards

IEC 61131-3
Beckhoff Library

Siemens
 www.siemens.com/index.jsp

Helmholz
 www.helmholz.de

S7-300 with
Helmholz CAN300
Master

-

VIPA
 www.vipa.de

VIPA 214-2CM02
CAN-Master

IEC 61131-3 VIPA
Library

Note: All other CAN products of other manufacturers can also be used, however no motion
control library is available.

Edition May 2008 / Subject to change maxon motor control 3

http://www.maxonmotor.com/
http://www.ixxat.de/
http://www.vector-informatik.de/
http://www.ni.com/can/
http://www.beckhoff.de/
http://www.siemens.com/index.jsp
http://www.helmholz.de/
http://www.vipa.de/

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

Step 2:
CAN Bus Wiring

The two-wire bus line has to be terminated at both ends with a termination resistor of 120 Ω.
The two-wires should be twisted and may be shielded depending on EMC requirements.

Connection EPOS Positioning Controller:

EPOS 24/1 (280937, 302267,
317270)

EPOS 24/1 (302287),
EPOS 24/5 (275512),
EPOS 70/10 (300583),
EPOS2 50/5(347717)

MCD EPOS 60W (326343)

Connector J2 pin 1 “CAN high”

Pin 1 “CAN high”

Connector J2 pin 6 “CAN high”

Connector J2 pin 2 “CAN low” Pin 2 “CAN low” Connector J2 pin 7 “CAN low”
Connector J2 pin 5 “CAN GND” Pin 3 “CAN GND Connector J2 pin 4 “GND”
CAN shield connect to taphole
on EPOS 24/1 housing

Pin 4 “CAN shield” Cable shield soldered on
connector housing

female male

Figure 3: Connector (J2) Figure 4: CAN connector
Molex Micro-Fit 3.0TM
4 poles (430-25-0400)

Figure 5: Pin assignment for
female and male D-Sub
connectors

Connection CAN bus line:

CAN 9 pin D-Sub (DIN41652) on
PLC or PC CAN interface

CAN RJ45 on PLC or PC CAN interface

Pin 7 “CAN_H” high bus line

Pin 1 “CAN_H” bus line

Pin 2 “CAN_L” low bus line Pin 2 “CAN_L” bus line
Pin 3 “CAN_GND” Ground Pin 3 “CAN_GND” Ground

Pin 7 “CAN_GND” Ground
Pin 5 “CAN_Shield” Cable Shield Pin 6 “CAN_SHLD” Optional CAN Shield

 female male female male

Figure 6: Pin assignment for
female and male D-Sub
connectors

Figure 7: Pin assignment for female and male RJ45
connectors

4 maxon motor control Edition May 2008 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

Step 3:
CAN Node-ID

For all devices a unique Node-ID has to be selected.

EPOS 24/1
The CAN-ID (= Node-ID) is set by DIP-Switch 1 ... 4.
All addresses from 1 ... 15 can be coded using the binary code.

Switch Binary code Value
1 20 1
2 21 2
3 22 4
4 23 8

 Figure 8: DIP-Switch EPOS 24/1

By setting DIP-Switch address 0 the CAN-ID can be configured by software (changing object
‘Node-ID’ Index 0x2000 Sub-Index 0x00) Range: 1 … 127.

EPOS 24/5 and EPOS 70/10
The CAN-ID (= Node-ID) is set by DIP-Switch 1 ... 7.
All addresses from 1 ... 127 can be coded using the binary code.

Switch Binary code Value
1 20 1
2 21 2
3 22 4
4 23 8
5 24 16
6 25 32
7 26 64

 Figure 9: DI -Switch EPOS 24/5 and 70/10P

By setting DIP-Switch address 0 the CAN-ID can be configured by software (changing object
‘Node-ID’) Range: 1 … 127.

MCD EPOS 60W
The CAN-ID (= Node-ID) is detected with Layer setting services (LSS). An exact description
is found in the document ‘EPOS Firmware Specification’.

EPOS2 50/5
The CAN-ID (= Node-ID) is set by DIP-Switch 1 ... 7.
All addresses from 1 ... 127 can be coded using the binary code.

Switch Binary code Value
1 20 1
2 21 2
3 22 4
4 23 8
5 24 16
6 25 32
7 26 64

 Figure 10: DIP-Switch EPOS2 50/5

By setting DIP-Switch address 0 the CAN-ID can be configured by software (changing object
‘Node-ID’) Range: 1 … 127.

Edition May 2008 / Subject to change maxon motor control 5

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

Step 4:
CAN
Communication

For the EPOS the following CAN bit rates are available:

Object ‘CAN Bit rate’
(Index 0x2001 Sub-Index 0x00)

Bit rate Max. line length
according to CiA DS-102

0 1 MBit/s 25 m
1 800 kBit/s 50 m
2 500 kBit/s 100 m
3 250 kBit/s 250 m
4 125 kBit/s 500 m
5 50 kBit/s 1000 m
6 20 kBit/s 2500 m

All devices on the CAN bus have to use the same bit rate! The maximum bit rate of a
CANopen bus depends on the line length. Use the EPOS Studio to configure bit rate by
writing the object ‘CAN Bit rate’ (Index 0x2001, Sub-Index 0x00) in the object dictionary.

Step 5:
Activate
Changes

Activate the changes by saving and resetting the EPOS.
Execute first menu item ‘Save All Parameters’, then item ‘Reset Node’ in the context menu of
the selected node in the EPOS Studio.

Step 6:
Communication
Test

Use a CAN monitor program (supported by manufacturer of PC or PLC CAN interface) to
check the current wiring and EPOS configuration.

1. Reset all EPOS devices on the bus.
2. At power on the EPOS will send a boot up message.
3. Check that all connected devices send a boot up message (otherwise the EPOS

produces a “CAN in Error Passive Mode”.
4. Boot up message:
 COB-ID = 0x700 + Node-ID
 Data [0] = 0x00

For example the figure below shows the incoming message on CAN bus (EPOS Node-ID = 1)
by a CAN monitor from IXXAT.

Figure 11: Example boot up message of node 1

6 maxon motor control Edition May 2008 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

SDO Communication

A Service Data Object (SDO) reads from entries or
writes to entries of the Object Dictionary. The SDO
transport protocol allows transmitting objects of any
size. The SDO communication can be used to
configure the object of the EPOS.

Figure 12: SDO communication

Two different transfer types are supported. The
normal transfer is used for reading or writing objects
with a size higher than 4 bytes. This transfer type
uses a segmented SDO protocol. This means the
transfer is split into different SDO segments (CAN
frames). For objects of 4 bytes or less a non-
segmented SDO protocol can be used. This transfer
is called expedited transfer.

Nearly all objects of the EPOS object dictionary can be read and written using the non-segmented SDO protocol
(expedited transfer). Only the data recorder buffer needs to be read using the segmented SDO protocol. For this
reason only the non-segmented SDO protocol is explained in this application note. For a description of the
segmented protocol (Normal Transfer Type) have a look at the CANopen specification (CiA Standard 301).

Expedited SDO Protocol

Reading Object

Client =>
Server COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x600 +

Node-ID Index
LowByte

Index
HighByte

Sub-
Index Reserved

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 1 0 X X X X X

Server =>
Client COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x580 +

Node-ID Index
LowByte

Index
HighByte

Sub-
Index

Object
Byte 0

Object
Byte 1

Object
Byte 2

Object
Byte 3

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 1 0 X n e s

Figure 13: SDO Upload Protocol (Expedited Transfer Type)

Writing Object

Client =>
Server COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x600 +

Node-ID Index
LowByte

Index
HighByte

Sub-
Index

Object
Byte 0

Object
Byte 1

Object
Byte 2

Object
Byte 3

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 0 1 X n e s

Server =>
Client COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x580 +

Node-ID Index
LowByte

Index
HighByte

Sub-
Index Reserved

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 1 1 X X X X X

Figure 14: SDO Download Protocol (Expedited Transfer Type)

Edition May 2008 / Subject to change maxon motor control 7

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

Abort SDO Protocol (in case of error)
Server =>
Client COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x580 +

Node-ID Index
LowByte

Index
HighByte

Sub-
Index Abort Code

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 1 1 0 X X X X X

Figure 15: Abort SDO Transfer Protocol

Note: The ‘Abort Codes’ are described in the document 'EPOS Firmware Specification' in the section

'Communication Errors (Abort Codes)'.

Legend: ccs: client command specifier (Bit 7 ... 5)
 scs: server command specifier (Bit 7 ... 5)
 X: Not used; always 0
 n: Only valid if e = 1 and s = 1, otherwise 0. If valid it indicates the number of bytes in

Data [Byte 4 - 7] that do not contain data. Bytes [8 - n, 7] do not contain segment data.
 e: Transfer type (0: normal transfer; 1: expedited transfer)
 s: Size indicator (0: data set size is not indicated; 1: data set size is indicated)

Overview of important command specifier ([Byte 0] Bit 7 … 5):

Length Sending Data [Byte 0] Receiving Data [Byte 0]
1 Byte 40 4F
2 Byte 40 4B

Reading Object

4 Byte 40 43

Length Sending Data [Byte 0] Receiving Data [Byte 0]
1 Byte 2F (or 22) 60
2 Byte 2B (or 22) 60
4 Byte 23 (or 22) 60

Writing Object

Not defined 22 60

8 maxon motor control Edition May 2008 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

SDO Communication Examples

Example Read

Read ‘Current Regulator P-Gain’ (Index 0x60F6 Sub-Index 0x01) from node 1

CANopen Sending SDO Frame CANopen Receiving SDO Frame
COB-ID 0x601 0x600 + Node-ID COB-ID 0x581 0x580 + Node-ID
Data[0] 0x40 ccs = 2 Data[0] 0x4B scs = 2, n = 2, e = 1, s = 1
Data[1] 0xF6 Index LowByte Data[1] 0xF6 Index LowByte
Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte
Data[3] 0x01 Sub-Index Data[3] 0x01 Sub-Index
Data[4] 0x00 reserved Data[4] 0x90 P-Gain LowByte
Data[5] 0x00 reserved Data[5] 0x01 P-Gain HighByte
Data[6] 0x00 reserved Data[6] 0x00 reserved
Data[7] 0x00 reserved Data[7] 0x00 reserved

 Current Regulator P-Gain: 0x00000190 = 400

Example Write

Write ‘Current Regulator P-Gain’ (Index 0x60F6 Sub-Index 0x01) to node 1

CANopen Sending SDO Frame CANopen Receiving SDO Frame
COB-ID 0x601 0x600 + Node-ID COB-ID 0x581 0x580 + Node-ID
Data[0] 0x2B ccs = 1, n = 2, e = 1, s = 1 Data[0] 0x60 scs = 3
Data[1] 0xF6 Index LowByte Data[1] 0xF6 Index LowByte
Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte
Data[3] 0x01 Sub-Index Data[3] 0x01 Sub-Index
Data[4] 0x12 P-Gain LowByte Data[4] 0x00 reserved
Data[5] 0x34 P-Gain HighByte Data[5] 0x00 reserved
Data[6] 0x00 reserved Data[6] 0x00 reserved
Data[7] 0x00 reserved Data[7] 0x00 reserved

 Current Regulator P-Gain: New Value

Example Abort

Read ‘Unknown Object’ (Index 0x2000 Sub-Index 0x08) to node 1

CANopen Sending SDO Frame CANopen Receiving SDO Frame
COB-ID 0x601 0x600 + Node-ID COB-ID 0x581 0x580 + Node-ID
Data[0] 0x40 ccs = 2 Data[0] 0x80 scs = 3
Data[1] 0x00 Index LowByte Data[1] 0x00 Index LowByte
Data[2] 0x20 Index HighByte Data[2] 0x20 Index HighByte
Data[3] 0x08 Sub-Index Data[3] 0x08 Sub-Index
Data[4] 0x00 reserved Data[4] 0x11 Abort Code [Byte 0]
Data[5] 0x00 reserved Data[5] 0x00 Abort Code [Byte 1]
Data[6] 0x00 reserved Data[6] 0x09 Abort Code [Byte 2]
Data[7] 0x00 reserved Data[7] 0x06 Abort Code [Byte 3]

 Abort code: 0x06090011

=> The last read or write command had a wrong

object sub index

Edition May 2008 / Subject to change maxon motor control 9

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

PDO Communication

Process Data Objects (PDOs) are used for fast data transmission (real-time data) with a high priority. PDOs are
unconfirmed services containing no protocol overhead. Consequently, they represent an extremely fast and flexible
method of transmitting data from one node to any number of other nodes. PDOs can contain a maximum of 8 data
bytes that can be specifically compiled and confirmed by the user to suit his requirements. Each PDO has a unique
identifier and is transmitted by only one node, but it can be received by more than one (producer/consumer
communication).
The CANopen network management is node-oriented and follows a master/slave structure. It requires one device
in the network, which fulfils the function of the NMT (Network Management) Master. The other nodes are NMT
Slaves.

Figure 16 : Network Management (NMT)

The CANopen NMT Slave devices implement a state machine, which brings every device in Pre-Operational state
automatically after power-on and internal initialisation. In this state the node may be configured and parameterised
via SDO (e.g. using a configuration tool), no PDO communication is allowed.

To switch from Pre-Operational to Operational State, you have to send the ‘Start Remote Node Protocol’:
Start Remote Node Protocol

COB-ID CS (Byte 0) Node-ID (Byte 1) Functionality
0 0x01 0 (all) All EPOS (all CANopen nodes) will enter the Operational

NMT State
0 0x01 n The EPOS (or CANopen node) with the Node-ID n will enter

the Operational NMT State

To switch from Operational to Pre-Operational State, you have to send the ‘Enter Pre-Operational Protocol’:
Enter Pre-Operational Protocol

COB-ID CS (Byte 0) Node-ID (Byte 1) Functionality
0 0x80 0 (all) All EPOS (all CANopen nodes) will enter the Pre-

Operational NMT State
0 0x80 n The EPOS (or CANopen node) with the Node-ID n will enter

the Pre-Operational NMT State

Figure 17 : NMT Slave State Diagram

Note: More information about NMT Services can be found in the document ‘Communication Guide’.

10 maxon motor control Edition May 2008 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

PDO Transmissions

PDO transmissions may be driven by remote requests, event triggered and by the Sync message received:

- Remotely requested:
Another device may initiate the transmission of an asynchronous PDO by sending a remote transmission
request (remote frame).

- Event Triggered (only Transmit PDOs):

An event of a mapped Object (e.g. velocity changed) will cause the transmission of this TxPDO. Sub-Index
3h of the object ‘Transmit PDO X Parameter’ contains the inhibit time. This time is a minimum interval for
PDO transmission. The value is defined as multiple of 100 us.

- Synchronous transmission:

In order to initiate simultaneous sampling of input values of all nodes, a periodically transmitted Sync
message is required. Synchronous transmission of PDOs takes place in cyclic and acyclic transmission
mode. Cyclic transmission means that the node waits for the Sync message, after which it sends its
measured values. Its PDO transmission type number (1 to 240) indicates the Sync rate it listens to (how
many Sync messages the node waits before the next transmission of its values). The EPOS supports only
Sync rates of 1.

PDO Mapping

The default mapping of application objects
as well as the supported transmission
mode is described in the Object Dictionary
for each PDO. PDO identifiers should
have high priority to guarantee a short
response time. PDO transmission is not
confirmed. The PDO mapping defines
which application objects are transmitted
within a PDO. It describes the sequence
and length of the mapped application
objects. A device that supports variable
mapping of PDOs must support this
during the pre-operational state. If
dynamic mapping during operational state
is supported, the SDO Client is
responsible for data consistency.

Figure 18: PDO mapping

Edition May 2008 / Subject to change maxon motor control 11

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

PDO Configuration

For PDO Configuration you have to be in the Pre-Operational state!

The following section explains step by step how the configuration has to be implemented for PDOs. For all changes
in the 'Object Dictionary' described below, use the EPOS Studio. For each step an example is noted for 'Receive
PDO 1' and 'Node 1'.

Step 1:
Configure
COB-ID

The default value of the COB-ID depends on the Node-ID (Default COB-ID = PDO-Offset +
Node-ID).

Otherwise the COB-ID can be set in a defined range.

Below a table for all default COB-IDs and ranges of COB-IDs:

Object Index Sub-Index Default
COB-ID Node 1

TxPDO 1 0x1800 0x01 0x181
TxPDO 2 0x1801 0x01 0x281
TxPDO 3 0x1802 0x01 0x381
TxPDO 4 0x1803 0x01 0x481
RxPDO 1 0x1400 0x01 0x201
RxPDO 2 0x1401 0x01 0x301
RxPDO 3 0x1402 0x01 0x401
RxPDO 4 0x1403 0x01 0x501

All changed COB-IDs can be reset by 'Restore Default PDO COB-IDs' in the context menu on
’Object Dictionary’ view of the EPOS Studio.

Example: Object ‘COB-ID used by RxPDO 1’ (Index 0x1400, Sub-Index 0x01):

 Default COB ID RxPDO 1 = 0x200 + Node-ID = 0x201
 In Range COB ID RxPDO 1 = 0x233

Step 2:
Set
Transmission
Type

Type 0x01 TxPDOs The data is sampled and transmitted after the occurrence of
the SYNC.

 RxPDOs The data is passed to the EPOS and transmitted after the
occurrence of the SYNC.

Type 0xFD

TxPDOs The data is sampled and transmitted after the occurrence of a
remote transmission request (RTR).

Type 0xFF TxPDOs The data is sampled and transmitted after the occurrence of a
remote transmission request or an internal event (value
changed).

 RxPDOs The data is passed directly to the EPOS application

Example: Object 'Transmission Type' (Index 0x1400, Sub-Index 0x02)

 Type = 0xFF

Step 3:
Number of
Mapped
Application
Objects

Disable the PDO by wiring zero to the object 'Number of Mapped Application Objects in …'

Example: Object 'Number of Mapped Application Objects in RxPDO 1' (Index
0x1600, Sub-Index 0x00)

 Value = 0x00

12 maxon motor control Edition May 2008 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

Step 4:
Mapping
Objects

Set the value from an object.

Example: Object1 ‘1st Mapped Object in RxPDO 1’ (Index 0x1600, Sub-Index 0x01)
 Object2 ‘2nd Mapped Object in RxPDO 1’ (Index 0x1600, Sub-Index 0x02)
 Object3 ‘3rd Mapped Object in RxPDO 1’ (Index 0x1600, Sub-Index 0x03)

RxPDO1 No. Mapped Object
 1. Object1 = 0x60400010 Controlword (16bit)
 2. Object2 = 0x607A0020 Target Position (32bit)
 3. Object3 = 0x60FB0210 Position Regulator I-Gain (16bit)

All PDOs are dynamic. 8 Bytes (64bit) can be mapped in a PDO (max. 8 Objects).

Note: Appendix PDO Object!

Note: All mappable objects are listened in the associated document “Firmware
Specification” (see tables Receive/Transmit PDO mapping objects).

Step 5:
Number of
Mapped
Application
Objects

Enable the PDO by writing the value of the number of objects in 'Number of Mapped
Application Objects in …’.

Example: Object 'Number of Mapped Application Objects in RxPDO 1' (Index
0x1600, Sub-Index 0x00)

 Value = 0x03

Step 6:
Activate
Changes

The changes are directly activated.
Execute the menu item ‘Save All Parameter’ in the context menu from the used node (EPOS
Studio – Navigation Window Workspace or Communication) or in the context menu in the
view ’Object Dictionary’.

Edition May 2008 / Subject to change maxon motor control 13

maxon motor control
EPOS Positioning Controller EPOS Application Note: CANopen Basic Information

14 maxon motor control Edition May 2008 / Subject to change

Node Guarding Protocol

To detect absent devices (e.g. because of bus-off) which do not transmit PDOs regularly. The NMT Master can
manage a database, where besides other information the expected states of all connected devices are recorded,
which is known as Node Guarding. With cyclic Node Guarding the NMT Master regularly polls its NMT Slaves. To
detect the absence of the NMT Master, the slaves test internally, whether the Node Guarding is taking place in the
defined time interval (Life Guarding). The Node Guarding is initiated by the NMT Master in Pre-Operational state of
the slave by transmitting a Remote Frame. Node Guarding is also activated in the Stopped State active.

Figure 16: Node Guarding Protocol Timing Diagram

Notes:
1 Data Field
The data field holds the NMT State. Each time the value of toggle changes between 0x00 and 0x80. Therefore the
following values for the data field are possible:

Value T Eoggle POS NMT State
0x04 not set Stopped
0x84 set Stopped
0x05 not set Operational
0x85 set Operational
0x7F not set Pre-Operational
0xFF set Pre-Operational

2 Node Guard Time is calculated by the following Objects: NodeGuardTime = GuardTime * LifeTimeFactor

3 Node / Life Guarding Event
In case the Remote Transmit Request (RTR) is missed by the EPOS it will change it’s device state to error (Node
Guarding Error).
In case the answer is missed by the Master System, it should react conveniently with the Node Guarding Event.

maxon motor control
EPOS Application Note: CANopen Basic Information EPOS Positioning Controller

Edition May 2008 / Subject to change maxon motor control 15

Heartbeat Protocol

The Heartbeat Protocol has a higher priority than the Node Guarding Protocol. If both are enabled, only the
Heartbeat Protocol is supported. The EPOS transmits a heartbeat message cyclically if the Heartbeat Protocol is
enabled (Heartbeat Producer Time 0 = Disabled, Heartbeat Producer Time greater than 0 = enabled). The
Heartbeat Consumer guards the reception of the Heartbeat within the Heartbeat Consumer Time. If the Heartbeat
Producer Time is configured on the EPOS it starts immediately with the Heartbeat Protocol.

Figure 17: Heartbeat Protocol Timing Diagram

Notes:
1 Data Field
The Data Field holds the NMT State:

Value EPOS NMT State
0x00 Boot-Up
0x04 Stopped
0x05 Operational
0x7F Pre-Operational

2 Heartbeat Producer- and Heartbeat Consumer Time
The Heartbeat Consumer Time has to be longer than the Heartbeat Producer Time because of generation-,
sending- and indication time (Heartbeat Consumer Time ≥ Heartbeat Producer Time + 5ms). Each indication of
the Master resets the Heartbeat Consumer Time.

3 Heartbeat Event
If the EPOS is in an unknown state (e.g. there is no longer a supply voltage on the device) the Heartbeat Protocol
can’t be sent to the Master. The Master recognizes this after the Heartbeat Consumer Time and generates a
Heartbeat Event.

	Network Structure
	Configuration
	SDO Communication
	PDO Communication
	Node Guarding Protocol
	Heartbeat Protocol

