

DC motor as an energy converter

- electrical in mechanical energy
 - speed constant
 - torque constant
 - speed-torque line

 $P_J = R \cdot I^2$

- applies to DC and EC motors
 - "EC" = "brushless DC" (BLDC)

maxon Motor Data and Operating Ranges How to interpret the data of maxon motors?

Characteristic motor data

describe the motor design and general behaviour

- independent of actual voltage or current
- strongly winding dependent values (electromechanical)
 - terminal resistance (phase to phase) R
 - terminal inductance (phase to phase) L
 - torque constant k_M
 - speed constant k_n
- almost independent of winding (mechanical)
 - speed-torque gradient Δn/ΔM
 - mechanical time constant τ_m
 - rotor mass inertia J_{Mot}

maxon motor

Page 2

Winding resistance

resistance increases from left to right

low resistance winding

high resistance winding

- thick wire, few turns
- low rated voltage
- high rated and starting currents
- high specific speed (min⁻¹/V)
- low specific torque (mNm/A)

- thin wire, many turns
- high rated voltage
- low rated and starting currents
- low specific speed (min⁻¹/V)
- high specific torque (mNm/A)

maxon motor

Torque constant k_M

produced torque is proportional to motor current

$$M = k_M \cdot I$$

- defined by motor geometry and magnetic flux densities
- measuring torques by measuring the current
- for the motor: torque = current
- unit: mNm/A

Torque and current: torque constant

forces:

force on current leading conductor in a magnetic field

torque:

sum of all forces at the distance to the rotating axis

influencing parameters:

geometry field density winding number

> design

 $M = k_M \cdot I$

current I

application

maxon motor

Speed constant k_n

- Induced voltage U_{ind} is proportional to motor speed n
 - law of induction: changing flux in a conductor loop
 - induced voltage proportional to speed
 - basically the inverse of k_M, but in different units

 $n = k_n \cdot U_{ind}$

- Speed constant k_n
 - mostly used for calculating no-load speeds n₀

 $n_0 = k_n \cdot U$

- unit: min⁻¹ / V
- Generator constant k_p
 - inverse of k_n: motor as a generator (e.g. DC-Tacho). How much voltage is produced per rpm?
 - units: mV / min⁻¹

V / 1000 min⁻¹

Motor as an electrical circuit

EMF: induced voltage U_{ind} (winding) resistance R winding inductance L

 voltage losses over L can be neglected in DC motors applied motor voltage U:

$$U = L \cdot \frac{\partial I}{\partial t} + R \cdot I + EMF \cong R \cdot I + U_{ind}$$

$$U_{ind} = U - R \cdot I$$

$$\frac{n}{k_n} = U - R \cdot \frac{M}{k_M}$$

$$n = k_n \cdot U - \left(\frac{30'000}{\pi} \cdot \frac{R}{k_M^2}\right) \cdot M$$
$$n = k_n \cdot U - \frac{\Delta n}{\Delta M} \cdot M$$

naxon motor

Speed-torque line

Speed-torque gradient

Values at nominal voltage

describe the special working points: • at rated voltage U_N

Friction and no-load

Operating points

- Load operating points are characterized by a load speed n_L at a given load torque M_I
- Motor operating points lie on the speed-torque-line: select the motor voltage accordingly

Acceleration

acceleration at constant voltage:

maxon standard tolerances

Influence of temperature

maxon motor driven by precision

Max. efficiency

Motor limits: operation ranges

Short-term operation at overload

Thermal motor data

describe the motor heating and thermal limits

- depend strongly on mounting conditions
- standard mounting:
- heating and cooling
 - thermal resistance housing-ambient R_{th2}
 - thermal resistance winding-housing R_{th1}
 - thermal time constant of winding τ_{thW}
 - thermal time constant of motor τ_{thS}
- temperature limits
 - ambient temperature range
 - max. winding temperature T_{max}

free convection at 25 °C ambient temperature

> maxon motor driven by precision

Nominal Torque and Temperature

maxon motor driven by precision

Mechanical motor data

describe maximum speed and the properties of bearings

(shaft supported)

- max. permissible speed
 - limited by bearing life considerations (EC)
 - limited by relative speed between collector and brushes (DC)
- axial and radial play
 - suppressed by a preload
- axial and radial bearing load
 - dynamic: in operation
 - static: at stall

maxon motor

Assigned power rating

- no general criteria
 - electrical power at the rated working point
 - output power at the rated working point:
 - or maximum output power at rated voltage
 - but also "marketing" factors
- anyway ...
 - assigned power rating is only a rough estimate
 - drive must fulfill both, torque and speed requirements

 $P_{typ} = \frac{\pi}{30} \cdot n_N \cdot M_N$